forked from SciML/ModelingToolkit.jl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinitializationsystem.jl
1308 lines (1159 loc) · 47.4 KB
/
initializationsystem.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
using ModelingToolkit, OrdinaryDiffEq, NonlinearSolve, Test
using StochasticDiffEq, DelayDiffEq, StochasticDelayDiffEq
using ForwardDiff
using SymbolicIndexingInterface, SciMLStructures
using SciMLStructures: Tunable
using ModelingToolkit: t_nounits as t, D_nounits as D
using DynamicQuantities
@parameters g
@variables x(t) y(t) [state_priority = 10] λ(t)
eqs = [D(D(x)) ~ λ * x
D(D(y)) ~ λ * y - g
x^2 + y^2 ~ 1]
@mtkbuild pend = ODESystem(eqs, t)
initprob = ModelingToolkit.InitializationProblem(pend, 0.0, [], [g => 1];
guesses = [ModelingToolkit.missing_variable_defaults(pend); x => 1; y => 0.2])
conditions = getfield.(equations(initprob.f.sys), :rhs)
@test initprob isa NonlinearLeastSquaresProblem
sol = solve(initprob)
@test SciMLBase.successful_retcode(sol)
@test maximum(abs.(sol[conditions])) < 1e-14
@test_throws ModelingToolkit.ExtraVariablesSystemException ModelingToolkit.InitializationProblem(
pend, 0.0, [], [g => 1];
guesses = [ModelingToolkit.missing_variable_defaults(pend); x => 1; y => 0.2],
fully_determined = true)
initprob = ModelingToolkit.InitializationProblem(pend, 0.0, [x => 1, y => 0], [g => 1];
guesses = ModelingToolkit.missing_variable_defaults(pend))
@test initprob isa NonlinearLeastSquaresProblem
sol = solve(initprob)
@test SciMLBase.successful_retcode(sol)
@test all(iszero, sol.u)
@test maximum(abs.(sol[conditions])) < 1e-14
initprob = ModelingToolkit.InitializationProblem(
pend, 0.0, [], [g => 1]; guesses = ModelingToolkit.missing_variable_defaults(pend))
@test initprob isa NonlinearLeastSquaresProblem
sol = solve(initprob)
@test !SciMLBase.successful_retcode(sol)
@test_throws ModelingToolkit.ExtraVariablesSystemException ModelingToolkit.InitializationProblem(
pend, 0.0, [], [g => 1]; guesses = ModelingToolkit.missing_variable_defaults(pend),
fully_determined = true)
prob = ODEProblem(pend, [x => 1, y => 0], (0.0, 1.5), [g => 1],
guesses = ModelingToolkit.missing_variable_defaults(pend))
prob.f.initializeprob isa NonlinearProblem
sol = solve(prob.f.initializeprob)
@test maximum(abs.(sol[conditions])) < 1e-14
sol = solve(prob, Rodas5P())
@test maximum(abs.(sol[conditions][1])) < 1e-14
prob = ODEProblem(pend, [x => 1], (0.0, 1.5), [g => 1],
guesses = ModelingToolkit.missing_variable_defaults(pend))
prob.f.initializeprob isa NonlinearLeastSquaresProblem
sol = solve(prob.f.initializeprob)
@test maximum(abs.(sol[conditions])) < 1e-14
sol = solve(prob, Rodas5P())
@test maximum(abs.(sol[conditions][1])) < 1e-14
@test_throws ModelingToolkit.ExtraVariablesSystemException ODEProblem(
pend, [x => 1], (0.0, 1.5), [g => 1],
guesses = ModelingToolkit.missing_variable_defaults(pend),
fully_determined = true)
@connector Port begin
p(t)
dm(t) = 0, [connect = Flow]
end
@connector Flange begin
dx(t) = 0
f(t), [connect = Flow]
end
# Components ----
@mtkmodel Orifice begin
@parameters begin
Cₒ = 2.7
Aₒ = 0.00094
ρ₀ = 1000
p′ = 0
end
@variables begin
dm(t) = 0
p₁(t) = p′
p₂(t) = p′
end
@components begin
port₁ = Port(p = p′)
port₂ = Port(p = p′)
end
begin
u = dm / (ρ₀ * Aₒ)
end
@equations begin
dm ~ +port₁.dm
dm ~ -port₂.dm
p₁ ~ port₁.p
p₂ ~ port₂.p
p₁ - p₂ ~ (1 / 2) * ρ₀ * u^2 * Cₒ
end
end
@mtkmodel Volume begin
@parameters begin
A = 0.1
ρ₀ = 1000
β = 2e9
direction = +1
p′
x′
end
@variables begin
p(t)
x(t) = x′
dm(t) = 0
f(t) = p′ * A
dx(t) = 0
r(t), [guess = 1000]
dr(t), [guess = 1000]
end
@components begin
port = Port(p = p′)
flange = Flange(f = -p′ * A * direction)
end
@equations begin
D(x) ~ dx
D(r) ~ dr
p ~ +port.p
dm ~ +port.dm # mass is entering
f ~ -flange.f * direction # force is leaving
dx ~ flange.dx * direction
r ~ ρ₀ * (1 + p / β)
dm ~ (r * dx * A) + (dr * x * A)
f ~ p * A
end
end
@mtkmodel Mass begin
@parameters begin
m = 100
f′
end
@variables begin
f(t) = f′
x(t) = 0
dx(t) = 0
ẍ(t) = f′ / m
end
@components begin
flange = Flange(f = f′)
end
@equations begin
D(x) ~ dx
D(dx) ~ ẍ
f ~ flange.f
dx ~ flange.dx
m * ẍ ~ f
end
end
@mtkmodel Actuator begin
@parameters begin
p₁′
p₂′
end
begin #constants
x′ = 0.5
A = 0.1
end
@components begin
port₁ = Port(p = p₁′)
port₂ = Port(p = p₂′)
vol₁ = Volume(p′ = p₁′, x′ = x′, direction = -1)
vol₂ = Volume(p′ = p₂′, x′ = x′, direction = +1)
mass = Mass(f′ = (p₂′ - p₁′) * A)
flange = Flange(f = 0)
end
@equations begin
connect(port₁, vol₁.port)
connect(port₂, vol₂.port)
connect(vol₁.flange, vol₂.flange, mass.flange, flange)
end
end
@mtkmodel Source begin
@parameters begin
p′
end
@components begin
port = Port(p = p′)
end
@equations begin
port.p ~ p′
end
end
@mtkmodel Damper begin
@parameters begin
c = 1000
end
@components begin
flange = Flange(f = 0)
end
@equations begin
flange.f ~ c * flange.dx
end
end
@mtkmodel System begin
@components begin
res₁ = Orifice(p′ = 300e5)
res₂ = Orifice(p′ = 0)
act = Actuator(p₁′ = 300e5, p₂′ = 0)
src = Source(p′ = 300e5)
snk = Source(p′ = 0)
dmp = Damper()
end
@equations begin
connect(src.port, res₁.port₁)
connect(res₁.port₂, act.port₁)
connect(act.port₂, res₂.port₁)
connect(res₂.port₂, snk.port)
connect(dmp.flange, act.flange)
end
end
@mtkbuild sys = System()
initprob = ModelingToolkit.InitializationProblem(sys, 0.0)
conditions = getfield.(equations(initprob.f.sys), :rhs)
@test initprob isa NonlinearLeastSquaresProblem
@test length(initprob.u0) == 2
initsol = solve(initprob, reltol = 1e-12, abstol = 1e-12)
@test SciMLBase.successful_retcode(initsol)
@test maximum(abs.(initsol[conditions])) < 1e-14
@test_throws ModelingToolkit.ExtraEquationsSystemException ModelingToolkit.InitializationProblem(
sys, 0.0, fully_determined = true)
allinit = unknowns(sys) .=> initsol[unknowns(sys)]
prob = ODEProblem(sys, allinit, (0, 0.1))
sol = solve(prob, Rodas5P(), initializealg = BrownFullBasicInit())
# If initialized incorrectly, then it would be InitialFailure
@test sol.retcode == SciMLBase.ReturnCode.Unstable
@test maximum(abs.(initsol[conditions][1])) < 1e-14
prob = ODEProblem(sys, allinit, (0, 0.1))
prob = ODEProblem(sys, [], (0, 0.1), check = false)
@test_throws ModelingToolkit.ExtraEquationsSystemException ODEProblem(
sys, [], (0, 0.1), fully_determined = true)
sol = solve(prob, Rodas5P())
# If initialized incorrectly, then it would be InitialFailure
@test sol.retcode == SciMLBase.ReturnCode.Unstable
@test maximum(abs.(initsol[conditions][1])) < 1e-14
@connector Flange begin
dx(t), [guess = 0]
f(t), [guess = 0, connect = Flow]
end
@mtkmodel Mass begin
@parameters begin
m = 100
end
@variables begin
dx(t)
f(t), [guess = 0]
end
@components begin
flange = Flange()
end
@equations begin
# connectors
flange.dx ~ dx
flange.f ~ -f
# physics
f ~ m * D(dx)
end
end
@mtkmodel Damper begin
@parameters begin
d = 1
end
@variables begin
dx(t), [guess = 0]
f(t), [guess = 0]
end
@components begin
flange = Flange()
end
@equations begin
# connectors
flange.dx ~ dx
flange.f ~ -f
# physics
f ~ d * dx
end
end
@mtkmodel MassDamperSystem begin
@components begin
mass = Mass(; dx = 100, m = 10)
damper = Damper(; d = 1)
end
@equations begin
connect(mass.flange, damper.flange)
end
end
@mtkbuild sys = MassDamperSystem()
initprob = ModelingToolkit.InitializationProblem(sys, 0.0)
@test initprob isa NonlinearProblem
initsol = solve(initprob, reltol = 1e-12, abstol = 1e-12)
@test SciMLBase.successful_retcode(initsol)
allinit = unknowns(sys) .=> initsol[unknowns(sys)]
prob = ODEProblem(sys, allinit, (0, 0.1))
sol = solve(prob, Rodas5P())
# If initialized incorrectly, then it would be InitialFailure
@test sol.retcode == SciMLBase.ReturnCode.Success
prob = ODEProblem(sys, [], (0, 0.1))
sol = solve(prob, Rodas5P())
@test sol.retcode == SciMLBase.ReturnCode.Success
### Ensure that non-DAEs still throw for missing variables without the initialize system
@parameters σ ρ β
@variables x(t) y(t) z(t)
eqs = [D(D(x)) ~ σ * (y - x),
D(y) ~ x * (ρ - z) - y,
D(z) ~ x * y - β * z]
@mtkbuild sys = ODESystem(eqs, t)
u0 = [D(x) => 2.0,
y => 0.0,
z => 0.0]
p = [σ => 28.0,
ρ => 10.0,
β => 8 / 3]
tspan = (0.0, 100.0)
@test_throws ModelingToolkit.IncompleteInitializationError prob=ODEProblem(
sys, u0, tspan, p, jac = true)
# DAE Initialization on ODE with nonlinear system for initial conditions
# https://github.com/SciML/ModelingToolkit.jl/issues/2508
using ModelingToolkit, OrdinaryDiffEq, Test
using ModelingToolkit: t_nounits as t, D_nounits as D
function System2(; name)
vars = @variables begin
dx(t), [guess = 0]
ddx(t), [guess = 0]
end
eqs = [D(dx) ~ ddx
0 ~ ddx + dx + 1]
return ODESystem(eqs, t, vars, []; name)
end
@mtkbuild sys = System2()
prob = ODEProblem(sys, [sys.dx => 1], (0, 1)) # OK
prob = ODEProblem(sys, [sys.ddx => -2], (0, 1), guesses = [sys.dx => 1])
sol = solve(prob, Tsit5())
@test SciMLBase.successful_retcode(sol)
@test sol.u[1] == [1.0]
## Late binding initialization_eqs
function System3(; name)
vars = @variables begin
dx(t), [guess = 0]
ddx(t), [guess = 0]
end
eqs = [D(dx) ~ ddx
0 ~ ddx + dx + 1]
initialization_eqs = [
ddx ~ -2
]
return ODESystem(eqs, t, vars, []; name, initialization_eqs)
end
@mtkbuild sys = System3()
prob = ODEProblem(sys, [], (0, 1), guesses = [sys.dx => 1])
sol = solve(prob, Tsit5())
@test SciMLBase.successful_retcode(sol)
@test sol.u[1] == [1.0]
# Steady state initialization
@parameters σ ρ β
@variables x(t) y(t) z(t)
eqs = [D(D(x)) ~ σ * (y - x),
D(y) ~ x * (ρ - z) - y,
D(z) ~ x * y - β * z]
@named sys = ODESystem(eqs, t)
sys = structural_simplify(sys)
u0 = [D(x) => 2.0,
x => 1.0,
D(y) => 0.0,
z => 0.0]
p = [σ => 28.0,
ρ => 10.0,
β => 8 / 3]
tspan = (0.0, 0.2)
prob_mtk = ODEProblem(sys, u0, tspan, p)
sol = solve(prob_mtk, Tsit5())
@test sol[x * (ρ - z) - y][1] == 0.0
@variables x(t) y(t) z(t)
@parameters α=1.5 β=1.0 γ=3.0 δ=1.0
eqs = [D(x) ~ α * x - β * x * y
D(y) ~ -γ * y + δ * x * y
z ~ x + y]
@named sys = ODESystem(eqs, t)
simpsys = structural_simplify(sys)
tspan = (0.0, 10.0)
prob = ODEProblem(simpsys, [D(x) => 0.0, y => 0.0], tspan, guesses = [x => 0.0])
sol = solve(prob, Tsit5())
@test sol.u[1] == [0.0, 0.0]
# Initialize with an observed variable
prob = ODEProblem(simpsys, [z => 0.0], tspan, guesses = [x => 2.0, y => 4.0])
sol = solve(prob, Tsit5())
@test sol.u[1] == [0.0, 0.0]
prob = ODEProblem(simpsys, [z => 1.0, y => 1.0], tspan, guesses = [x => 2.0])
sol = solve(prob, Tsit5())
@test sol.u[1] == [0.0, 1.0]
# This should warn, but logging tests can't be marked as broken
@test_logs prob = ODEProblem(simpsys, [], tspan, guesses = [x => 2.0])
# Late Binding initialization_eqs
# https://github.com/SciML/ModelingToolkit.jl/issues/2787
@parameters g
@variables x(t) y(t) [state_priority = 10] λ(t)
eqs = [D(D(x)) ~ λ * x
D(D(y)) ~ λ * y - g
x^2 + y^2 ~ 1]
@mtkbuild pend = ODESystem(eqs, t)
prob = ODEProblem(pend, [x => 1], (0.0, 1.5), [g => 1],
guesses = [λ => 0, y => 1], initialization_eqs = [y ~ 1])
unsimp = generate_initializesystem(pend; u0map = [x => 1], initialization_eqs = [y ~ 1])
sys = structural_simplify(unsimp; fully_determined = false)
@test length(equations(sys)) == 3
# Extend two systems with initialization equations and guesses
# https://github.com/SciML/ModelingToolkit.jl/issues/2845
@variables x(t) y(t)
@named sysx = ODESystem([D(x) ~ 0], t; initialization_eqs = [x ~ 1])
@named sysy = ODESystem([D(y) ~ 0], t; initialization_eqs = [y^2 ~ 2], guesses = [y => 1])
sys = extend(sysx, sysy)
@test length(equations(generate_initializesystem(sys))) == 2
@test length(ModelingToolkit.guesses(sys)) == 1
# https://github.com/SciML/ModelingToolkit.jl/issues/2873
@testset "Error on missing defaults" begin
@variables x(t) y(t)
@named sys = ODESystem([x^2 + y^2 ~ 25, D(x) ~ 1], t)
ssys = structural_simplify(sys)
@test_throws ModelingToolkit.MissingVariablesError ODEProblem(
ssys, [x => 3], (0, 1), []) # y should have a guess
end
# https://github.com/SciML/ModelingToolkit.jl/issues/3025
@testset "Override defaults when setting initial conditions with unknowns(sys) or similar" begin
@variables x(t) y(t)
# system 1 should solve to x = 1
ics1 = [x => 1]
sys1 = ODESystem([D(x) ~ 0], t; defaults = ics1, name = :sys1) |> structural_simplify
prob1 = ODEProblem(sys1, [], (0.0, 1.0), [])
sol1 = solve(prob1, Tsit5())
@test all(sol1[x] .== 1)
# system 2 should solve to x = y = 2
sys2 = extend(
sys1,
ODESystem([D(y) ~ 0], t; initialization_eqs = [y ~ 2], name = :sys2)
) |> structural_simplify
ics2 = unknowns(sys1) .=> 2 # should be equivalent to "ics2 = [x => 2]"
prob2 = ODEProblem(sys2, ics2, (0.0, 1.0), []; fully_determined = true)
sol2 = solve(prob2, Tsit5())
@test all(sol2[x] .== 2) && all(sol2[y] .== 2)
end
# https://github.com/SciML/ModelingToolkit.jl/issues/3029
@testset "Derivatives in initialization equations" begin
@variables x(t)
sys = ODESystem(
[D(D(x)) ~ 0], t; initialization_eqs = [x ~ 0, D(x) ~ 1], name = :sys) |>
structural_simplify
@test_nowarn ODEProblem(sys, [], (0.0, 1.0), [])
sys = ODESystem(
[D(D(x)) ~ 0], t; initialization_eqs = [x ~ 0, D(D(x)) ~ 0], name = :sys) |>
structural_simplify
@test_nowarn ODEProblem(sys, [D(x) => 1.0], (0.0, 1.0), [])
end
# https://github.com/SciML/ModelingToolkit.jl/issues/3049
@testset "Derivatives in initialization guesses" begin
for sign in [-1.0, +1.0]
@variables x(t)
sys = ODESystem(
[D(D(x)) ~ 0], t;
initialization_eqs = [D(x)^2 ~ 1, x ~ 0], guesses = [D(x) => sign], name = :sys
) |> structural_simplify
prob = ODEProblem(sys, [], (0.0, 1.0), [])
sol = solve(prob, Tsit5())
@test sol(1.0, idxs = sys.x) ≈ sign # system with D(x(0)) = ±1 should solve to x(1) = ±1
end
end
# https://github.com/SciML/ModelingToolkit.jl/issues/2619
@parameters k1 k2 ω
@variables X(t) Y(t)
eqs_1st_order = [D(Y) + Y - ω ~ 0,
X + k1 ~ Y + k2]
eqs_2nd_order = [D(D(Y)) + 2ω * D(Y) + (ω^2) * Y ~ 0,
X + k1 ~ Y + k2]
@mtkbuild sys_1st_order = ODESystem(eqs_1st_order, t)
@mtkbuild sys_2nd_order = ODESystem(eqs_2nd_order, t)
u0_1st_order_1 = [X => 1.0, Y => 2.0]
u0_1st_order_2 = [Y => 2.0]
u0_2nd_order_1 = [X => 1.0, Y => 2.0, D(Y) => 0.5]
u0_2nd_order_2 = [Y => 2.0, D(Y) => 0.5]
tspan = (0.0, 10.0)
ps = [ω => 0.5, k1 => 2.0, k2 => 3.0]
oprob_1st_order_1 = ODEProblem(sys_1st_order, u0_1st_order_1, tspan, ps)
oprob_1st_order_2 = ODEProblem(sys_1st_order, u0_1st_order_2, tspan, ps)
oprob_2nd_order_1 = ODEProblem(sys_2nd_order, u0_2nd_order_1, tspan, ps) # gives sys_2nd_order
oprob_2nd_order_2 = ODEProblem(sys_2nd_order, u0_2nd_order_2, tspan, ps)
@test solve(oprob_1st_order_1, Rosenbrock23()).retcode ==
SciMLBase.ReturnCode.InitialFailure
@test solve(oprob_1st_order_2, Rosenbrock23())[Y][1] == 2.0
@test solve(oprob_2nd_order_1, Rosenbrock23()).retcode ==
SciMLBase.ReturnCode.InitialFailure
sol = solve(oprob_2nd_order_2, Rosenbrock23()) # retcode: Success
@test sol[Y][1] == 2.0
@test sol[D(Y)][1] == 0.5
@testset "Vector in initial conditions" begin
@variables x(t)[1:5] y(t)[1:5]
@named sys = ODESystem([D(x) ~ x, D(y) ~ y], t; initialization_eqs = [y ~ -x])
sys = structural_simplify(sys)
prob = ODEProblem(sys, [sys.x => ones(5)], (0.0, 1.0), [])
sol = solve(prob, Tsit5(), reltol = 1e-4)
@test all(sol(1.0, idxs = sys.x) .≈ +exp(1)) && all(sol(1.0, idxs = sys.y) .≈ -exp(1))
end
NonlinearSystemWrapper(eqs, t; kws...) = NonlinearSystem(eqs; kws...)
function NonlinearProblemWrapper(sys, u0, tspan, args...; kwargs...)
NonlinearProblem(sys, u0, args...; kwargs...)
end
function NLLSProblemWrapper(sys, u0, tspan, args...; kwargs...)
NonlinearLeastSquaresProblem(sys, u0, args...; kwargs...)
end
@testset "Initialization of parameters" begin
@variables _x(..) y(t)
@parameters p q
@brownian a b
x = _x(t)
# `System` constructor creates appropriate type with mtkbuild
# `Problem` and `alg` create the problem to test and allow calling `init` with
# the correct solver.
# `rhss` allows adding terms to the end of equations (only 2 equations allowed) to influence
# the system type (brownian vars to turn it into an SDE).
@testset "$Problem with $(SciMLBase.parameterless_type(alg))" for (System, Problem, alg, rhss) in [
(ModelingToolkit.System, ODEProblem, Tsit5(), zeros(2)),
(ModelingToolkit.System, SDEProblem, ImplicitEM(), [a, b]),
(ModelingToolkit.System, DDEProblem, MethodOfSteps(Tsit5()), [_x(t - 0.1), 0.0]),
(ModelingToolkit.System, SDDEProblem, ImplicitEM(), [_x(t - 0.1) + a, b]),
# polyalg cache
(NonlinearSystemWrapper, NonlinearProblemWrapper,
FastShortcutNonlinearPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, NewtonRaphson(), zeros(2)),
# quasi newton cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, Klement(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, SimpleNewtonRaphson(), zeros(2)),
# DFSane cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, DFSane(), zeros(2)),
# Least squares
# polyalg cache
(NonlinearSystemWrapper, NLLSProblemWrapper, FastShortcutNLLSPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NLLSProblemWrapper, LevenbergMarquardt(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NLLSProblemWrapper, SimpleGaussNewton(), zeros(2))
]
is_nlsolve = alg isa SciMLBase.AbstractNonlinearAlgorithm
function test_parameter(prob, sym, val, initialval = zero(val))
@test prob.ps[sym] ≈ initialval
if !is_nlsolve || prob.u0 !== nothing
@test init(prob, alg).ps[sym] ≈ val
end
@test solve(prob, alg).ps[sym] ≈ val
end
function test_initializesystem(sys, u0map, pmap, p, equation)
isys = ModelingToolkit.generate_initializesystem(
sys; u0map, pmap, guesses = ModelingToolkit.guesses(sys))
@test is_variable(isys, p)
@test equation in equations(isys) || (0 ~ -equation.rhs) in equations(isys)
end
D = is_nlsolve ? v -> v^3 : Differential(t)
u0map = Dict(x => 1.0, y => 1.0)
pmap = Dict()
pmap[q] = 1.0
# `missing` default, equation from Problem
@mtkbuild sys = System(
[D(x) ~ x * q + rhss[1], D(y) ~ y * p + rhss[2]], t; defaults = [p => missing], guesses = [p => 1.0])
pmap[p] = 2q
prob = Problem(sys, u0map, (0.0, 1.0), pmap)
test_parameter(prob, p, 2.0)
prob2 = remake(prob; u0 = u0map, p = pmap)
prob2.ps[p] = 0.0
test_parameter(prob2, p, 2.0)
# `missing` default, provided guess
@mtkbuild sys = System(
[D(x) ~ x + rhss[1], p ~ x + y + rhss[2]], t; defaults = [p => missing], guesses = [p => 0.0])
prob = Problem(sys, u0map, (0.0, 1.0))
test_parameter(prob, p, 2.0)
test_initializesystem(sys, u0map, pmap, p, 0 ~ p - x - y)
prob2 = remake(prob; u0 = u0map)
prob2.ps[p] = 0.0
test_parameter(prob2, p, 2.0)
# `missing` to Problem, equation from default
@mtkbuild sys = System(
[D(x) ~ x * q + rhss[1], D(y) ~ y * p + rhss[2]], t; defaults = [p => 2q], guesses = [p => 1.0])
pmap[p] = missing
prob = Problem(sys, u0map, (0.0, 1.0), pmap)
test_parameter(prob, p, 2.0)
test_initializesystem(sys, u0map, pmap, p, 0 ~ 2q - p)
prob2 = remake(prob; u0 = u0map, p = pmap)
prob2.ps[p] = 0.0
test_parameter(prob2, p, 2.0)
# `missing` to Problem, provided guess
@mtkbuild sys = System(
[D(x) ~ x + rhss[1], p ~ x + y + rhss[2]], t; guesses = [p => 0.0])
prob = Problem(sys, u0map, (0.0, 1.0), pmap)
test_parameter(prob, p, 2.0)
test_initializesystem(sys, u0map, pmap, p, 0 ~ x + y - p)
prob2 = remake(prob; u0 = u0map, p = pmap)
prob2.ps[p] = 0.0
test_parameter(prob2, p, 2.0)
# No `missing`, default and guess
@mtkbuild sys = System(
[D(x) ~ x * q + rhss[1], D(y) ~ y * p + rhss[2]], t; defaults = [p => 2q], guesses = [p => 0.0])
delete!(pmap, p)
prob = Problem(sys, u0map, (0.0, 1.0), pmap)
test_parameter(prob, p, 2.0)
test_initializesystem(sys, u0map, pmap, p, 0 ~ 2q - p)
prob2 = remake(prob; u0 = u0map, p = pmap)
prob2.ps[p] = 0.0
test_parameter(prob2, p, 2.0)
# Default overridden by Problem, guess provided
@mtkbuild sys = System(
[D(x) ~ q * x + rhss[1], D(y) ~ y * p + rhss[2]], t; defaults = [p => 2q], guesses = [p => 1.0])
_pmap = merge(pmap, Dict(p => q))
prob = Problem(sys, u0map, (0.0, 1.0), _pmap)
test_parameter(prob, p, _pmap[q])
test_initializesystem(sys, u0map, _pmap, p, 0 ~ q - p)
# Problem dependent value with guess, no `missing`
@mtkbuild sys = System(
[D(x) ~ y * q + p + rhss[1], D(y) ~ x * p + q + rhss[2]], t; guesses = [p => 0.0])
_pmap = merge(pmap, Dict(p => 3q))
prob = Problem(sys, u0map, (0.0, 1.0), _pmap)
test_parameter(prob, p, 3pmap[q])
# Should not be solved for:
# Override dependent default with direct value
@mtkbuild sys = System(
[D(x) ~ q * x + rhss[1], D(y) ~ y * p + rhss[2]], t; defaults = [p => 2q], guesses = [p => 1.0])
_pmap = merge(pmap, Dict(p => 1.0))
prob = Problem(sys, u0map, (0.0, 1.0), _pmap)
@test prob.ps[p] ≈ 1.0
@test prob.f.initialization_data === nothing
# Non-floating point
@parameters r::Int s::Int
@mtkbuild sys = System(
[D(x) ~ s * x + rhss[1], D(y) ~ y * r + rhss[2]], t; defaults = [s => 2r], guesses = [s => 1.0])
prob = Problem(sys, u0map, (0.0, 1.0), [r => 1])
@test prob.ps[r] == 1
@test prob.ps[s] == 2
@test prob.f.initialization_data === nothing
@mtkbuild sys = System(
[D(x) ~ x + rhss[1], p ~ x + y + rhss[2]], t; guesses = [p => 0.0])
@test_throws ModelingToolkit.MissingParametersError Problem(
sys, [x => 1.0, y => 1.0], (0.0, 1.0))
# Unsatisfiable initialization
prob = Problem(sys, [x => 1.0, y => 1.0], (0.0, 1.0),
[p => 2.0]; initialization_eqs = [x^2 + y^2 ~ 3])
@test prob.f.initialization_data !== nothing
@test solve(prob, alg).retcode == ReturnCode.InitialFailure
cache = init(prob, alg)
@test solve!(cache).retcode == ReturnCode.InitialFailure
end
@testset "Null system" begin
@variables x(t) y(t) s(t)
@parameters x0 y0
@mtkbuild sys = ODESystem([x ~ x0, y ~ y0, s ~ x + y], t; guesses = [y0 => 0.0])
prob = ODEProblem(sys, [s => 1.0], (0.0, 1.0), [x0 => 0.3, y0 => missing])
@test prob.ps[y0] ≈ 0.0
@test init(prob, Tsit5()).ps[y0] ≈ 0.7
@test solve(prob, Tsit5()).ps[y0] ≈ 0.7
end
using ModelingToolkitStandardLibrary.Mechanical.TranslationalModelica: Fixed, Mass,
Spring, Force,
Damper
using ModelingToolkitStandardLibrary.Mechanical: TranslationalModelica as TM
using ModelingToolkitStandardLibrary.Blocks: Constant
@named mass = TM.Mass(; m = 1.0, s = 1.0, v = 0.0, a = 0.0)
@named fixed = Fixed(; s0 = 0.0)
@named spring = Spring(; c = 2.0, s_rel0 = nothing)
@named gravity = Force()
@named constant = Constant(; k = 9.81)
@named damper = TM.Damper(; d = 0.1)
@mtkbuild sys = ODESystem(
[connect(fixed.flange, spring.flange_a), connect(spring.flange_b, mass.flange_a),
connect(mass.flange_a, gravity.flange), connect(constant.output, gravity.f),
connect(fixed.flange, damper.flange_a), connect(damper.flange_b, mass.flange_a)],
t;
systems = [fixed, spring, mass, gravity, constant, damper],
guesses = [spring.s_rel0 => 1.0])
prob = ODEProblem(sys, [], (0.0, 1.0), [spring.s_rel0 => missing])
@test prob.ps[spring.s_rel0] ≈ 0.0
@test init(prob, Tsit5()).ps[spring.s_rel0] ≈ -3.905
@test solve(prob, Tsit5()).ps[spring.s_rel0] ≈ -3.905
end
@testset "Update initializeprob parameters" begin
@variables _x(..) y(t)
@parameters p q
@brownian a b
x = _x(t)
@testset "$Problem with $(SciMLBase.parameterless_type(typeof(alg)))" for (System, Problem, alg, rhss) in [
(ModelingToolkit.System, ODEProblem, Tsit5(), zeros(2)),
(ModelingToolkit.System, SDEProblem, ImplicitEM(), [a, b]),
(ModelingToolkit.System, DDEProblem, MethodOfSteps(Tsit5()), [_x(t - 0.1), 0.0]),
(ModelingToolkit.System, SDDEProblem, ImplicitEM(), [_x(t - 0.1) + a, b]),
# polyalg cache
(NonlinearSystemWrapper, NonlinearProblemWrapper,
FastShortcutNonlinearPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, NewtonRaphson(), zeros(2)),
# quasi newton cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, Klement(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, SimpleNewtonRaphson(), zeros(2)),
# DFSane cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, DFSane(), zeros(2)),
# Least squares
# polyalg cache
(NonlinearSystemWrapper, NLLSProblemWrapper, FastShortcutNLLSPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NLLSProblemWrapper, LevenbergMarquardt(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NLLSProblemWrapper, SimpleGaussNewton(), zeros(2))
]
is_nlsolve = alg isa SciMLBase.AbstractNonlinearAlgorithm
D = is_nlsolve ? v -> v^3 : Differential(t)
@mtkbuild sys = System(
[D(x) ~ x + rhss[1], p ~ x + y + rhss[2]], t; guesses = [x => 0.0, p => 0.0])
prob = Problem(sys, [y => 1.0], (0.0, 1.0), [p => 3.0])
@test prob.f.initialization_data.initializeprob.ps[p] ≈ 3.0
@test init(prob, alg)[x] ≈ 2.0
prob.ps[p] = 2.0
@test prob.f.initialization_data.initializeprob.ps[p] ≈ 3.0
@test init(prob, alg)[x] ≈ 1.0
ModelingToolkit.defaults(prob.f.sys)[p] = missing
prob2 = remake(prob; u0 = [y => 1.0], p = [p => 3x])
@test !is_variable(prob2.f.initialization_data.initializeprob, p) &&
!is_parameter(prob2.f.initialization_data.initializeprob, p)
@test init(prob2, alg)[x] ≈ 0.5
@test_nowarn solve(prob2, alg)
end
end
@testset "Equations for dependent parameters" begin
@variables _x(..)
@parameters p q=5 r
@brownian a
x = _x(t)
@testset "$Problem with $(SciMLBase.parameterless_type(typeof(alg)))" for (System, Problem, alg, rhss) in [
(ModelingToolkit.System, ODEProblem, Tsit5(), 0),
(ModelingToolkit.System, SDEProblem, ImplicitEM(), a),
(ModelingToolkit.System, DDEProblem, MethodOfSteps(Tsit5()), _x(t - 0.1)),
(ModelingToolkit.System, SDDEProblem, ImplicitEM(), _x(t - 0.1) + a),
# polyalg cache
(NonlinearSystemWrapper, NonlinearProblemWrapper,
FastShortcutNonlinearPolyalg(), 0),
# generalized first order cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, NewtonRaphson(), 0),
# quasi newton cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, Klement(), 0),
# noinit cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, SimpleNewtonRaphson(), 0),
# DFSane cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, DFSane(), 0),
# Least squares
# polyalg cache
(NonlinearSystemWrapper, NLLSProblemWrapper, FastShortcutNLLSPolyalg(), 0),
# generalized first order cache
(NonlinearSystemWrapper, NLLSProblemWrapper, LevenbergMarquardt(), 0),
# noinit cache
(NonlinearSystemWrapper, NLLSProblemWrapper, SimpleGaussNewton(), 0)
]
is_nlsolve = alg isa SciMLBase.AbstractNonlinearAlgorithm
D = is_nlsolve ? v -> v^3 : Differential(t)
@mtkbuild sys = System(
[D(x) ~ 2x + r + rhss], t; parameter_dependencies = [r ~ p + 2q, q ~ p + 3],
guesses = [p => 1.0])
prob = Problem(sys, [x => 1.0], (0.0, 1.0), [p => missing])
@test length(equations(ModelingToolkit.get_parent(prob.f.initialization_data.initializeprob.f.sys))) ==
4
integ = init(prob, alg)
@test integ.ps[p] ≈ 2
end
end
@testset "Re-creating initialization problem on remake" begin
@variables _x(..) y(t)
@parameters p q
@brownian a b
x = _x(t)
@testset "$Problem with $(SciMLBase.parameterless_type(typeof(alg)))" for (System, Problem, alg, rhss) in [
(ModelingToolkit.System, ODEProblem, Tsit5(), zeros(2)),
(ModelingToolkit.System, SDEProblem, ImplicitEM(), [a, b]),
(ModelingToolkit.System, DDEProblem, MethodOfSteps(Tsit5()), [_x(t - 0.1), 0.0]),
(ModelingToolkit.System, SDDEProblem, ImplicitEM(), [_x(t - 0.1) + a, b]),
# polyalg cache
(NonlinearSystemWrapper, NonlinearProblemWrapper,
FastShortcutNonlinearPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, NewtonRaphson(), zeros(2)),
# quasi newton cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, Klement(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, SimpleNewtonRaphson(), zeros(2)),
# DFSane cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, DFSane(), zeros(2)),
# Least squares
# polyalg cache
(NonlinearSystemWrapper, NLLSProblemWrapper, FastShortcutNLLSPolyalg(), zeros(2)),
# generalized first order cache
(NonlinearSystemWrapper, NLLSProblemWrapper, LevenbergMarquardt(), zeros(2)),
# noinit cache
(NonlinearSystemWrapper, NLLSProblemWrapper, SimpleGaussNewton(), zeros(2))
]
is_nlsolve = alg isa SciMLBase.AbstractNonlinearAlgorithm
D = is_nlsolve ? v -> v^3 : Differential(t)
@mtkbuild sys = System(
[D(x) ~ x + rhss[1], p ~ x + y + rhss[2]], t; defaults = [p => missing], guesses = [
x => 0.0, p => 0.0])
prob = Problem(sys, [x => 1.0, y => 1.0], (0.0, 1.0))
@test init(prob, alg).ps[p] ≈ 2.0
# nonsensical value for y just to test that equations work
prob2 = remake(prob; u0 = [x => 1.0, y => 2x + exp(x)])
@test init(prob2, alg).ps[p] ≈ 3 + exp(1)
# solve for `x` given `p` and `y`
prob3 = remake(prob; u0 = [x => nothing, y => 1.0], p = [p => 2x + exp(y)])
@test init(prob3, alg)[x] ≈ 1 - exp(1)
@test_logs (:warn, r"overdetermined") remake(
prob; u0 = [x => 1.0, y => 2.0], p = [p => 4.0])
prob4 = remake(prob; u0 = [x => 1.0, y => 2.0], p = [p => 4.0])
@test solve(prob4, alg).retcode == ReturnCode.InitialFailure
prob5 = remake(prob)
@test init(prob, alg).ps[p] ≈ 2.0
end
end
@testset "`remake` changes initialization problem types" begin
@variables _x(..) y(t) z(t)
@parameters p q
@brownian a
x = _x(t)
@testset "$Problem with $(SciMLBase.parameterless_type(typeof(alg)))" for (System, Problem, alg, rhss) in [
(ModelingToolkit.System, ODEProblem, Tsit5(), 0),
(ModelingToolkit.System, SDEProblem, ImplicitEM(), a),
(ModelingToolkit.System, DDEProblem, MethodOfSteps(Tsit5()), _x(t - 0.1)),
(ModelingToolkit.System, SDDEProblem, ImplicitEM(), _x(t - 0.1) + a),
# polyalg cache
(NonlinearSystemWrapper, NonlinearProblemWrapper,
FastShortcutNonlinearPolyalg(), 0),
# generalized first order cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, NewtonRaphson(), 0),
# quasi newton cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, Klement(), 0),
# noinit cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, SimpleNewtonRaphson(), 0),
# DFSane cache
(NonlinearSystemWrapper, NonlinearProblemWrapper, DFSane(), 0),
# Least squares
# polyalg cache
(NonlinearSystemWrapper, NLLSProblemWrapper, FastShortcutNLLSPolyalg(), 0),
# generalized first order cache
(NonlinearSystemWrapper, NLLSProblemWrapper, LevenbergMarquardt(), 0),
# noinit cache
(NonlinearSystemWrapper, NLLSProblemWrapper, SimpleGaussNewton(), 0)
]
is_nlsolve = alg isa SciMLBase.AbstractNonlinearAlgorithm
D = is_nlsolve ? v -> v^3 : Differential(t)
alge_eqs = [y^2 * q + q^2 * x ~ 0, z * p - p^2 * x * z ~ 0]
@mtkbuild sys = System(
[D(x) ~ x * p + y^2 * q + rhss; alge_eqs],
t; guesses = [x => 0.0, y => 0.0, z => 0.0, p => 0.0, q => 0.0])
prob = Problem(sys, [x => 1.0], (0.0, 1.0), [p => 1.0, q => missing];
initialization_eqs = is_nlsolve ? alge_eqs : [])
@test is_variable(prob.f.initialization_data.initializeprob, q)
ps = prob.p
newps = SciMLStructures.replace(Tunable(), ps, ForwardDiff.Dual.(ps.tunable))
prob2 = remake(prob; p = newps)
@test eltype(state_values(prob2.f.initialization_data.initializeprob)) <:
ForwardDiff.Dual
@test eltype(prob2.f.initialization_data.initializeprob.p.tunable) <:
ForwardDiff.Dual
@test state_values(prob2.f.initialization_data.initializeprob) ≈
state_values(prob.f.initialization_data.initializeprob)
prob2 = remake(prob; u0 = ForwardDiff.Dual.(prob.u0))
@test eltype(state_values(prob2.f.initialization_data.initializeprob)) <:
ForwardDiff.Dual
@test eltype(prob2.f.initialization_data.initializeprob.p.tunable) <: Float64
@test state_values(prob2.f.initialization_data.initializeprob) ≈
state_values(prob.f.initialization_data.initializeprob)
prob2 = remake(prob; u0 = ForwardDiff.Dual.(prob.u0), p = newps)
@test eltype(state_values(prob2.f.initialization_data.initializeprob)) <:
ForwardDiff.Dual
@test eltype(prob2.f.initialization_data.initializeprob.p.tunable) <:
ForwardDiff.Dual
@test state_values(prob2.f.initialization_data.initializeprob) ≈
state_values(prob.f.initialization_data.initializeprob)
prob2 = remake(prob; u0 = [x => ForwardDiff.Dual(1.0)],
p = [p => ForwardDiff.Dual(1.0), q => missing])
@test eltype(state_values(prob2.f.initialization_data.initializeprob)) <:
ForwardDiff.Dual
@test eltype(prob2.f.initialization_data.initializeprob.p.tunable) <:
ForwardDiff.Dual
@test state_values(prob2.f.initialization_data.initializeprob) ≈
state_values(prob.f.initialization_data.initializeprob)
end